5,579 research outputs found

    The implications of climate change for the water environment in England

    Get PDF
    This paper reviews the implications of climate change for the water environment and its management in England. There is a large literature, but most studies have looked at flow volumes or nutrients and none have considered explicitly the implications of climate change for the delivery of water management objectives. Studies have been undertaken in a small number of locations. Studies have used observations from the past to infer future changes, and have used numerical simulation models with climate change scenarios. The literature indicates that climate change poses risks to the delivery of water management objectives, but that these risks depend on local catchment and water body conditions. Climate change affects the status of water bodies, and it affects the effectiveness of measures to manage the water environment and meet policy objectives. The future impact of climate change on the water environment and its management is uncertain. Impacts are dependent on changes in the duration of dry spells and frequency of ‘flushing’ events, which are highly uncertain and not included in current climate scenarios. There is a good qualitative understanding of ways in which systems may change, but interactions between components of the water environment are poorly understood. Predictive models are only available for some components, and model parametric and structural uncertainty has not been evaluated. The impacts of climate change depend on other pressures on the water environment in a catchment, and also on the management interventions that are undertaken to achieve water management objectives. The paper has also developed a series of consistent conceptual models describing the implications of climate change for pressures on the water environment, based around the source-pathway-receptor concept. They provide a framework for a systematic assessment across catchments and pressures of the implications of climate change for the water environment and its management

    The evaluation of national accounting matrices with environmental accounts (NAMEA) as a methodology for carrying out a sustainability assessment of the Scottish food and drink sector

    Get PDF
    This report introduces environmental input-output (IO) accounts for Scotland as an example of a NAMEA framework. It provides an introduction to the use of basic IO multiplier methodology, which can be applied to examine pollution/waste generation and/or resource use under production and consumption accounting principles

    Pest risk analysis for Phytophthora austrocedrae

    Get PDF
    The pathogen already has limited distribution in certain environmentally sensitive juniper habitats, as well as findings in nurseries and a private garden. The extent of distribution is unknown as is the pathway of introduction and spread. Eradication is an unrealistic objective, but a containment strategy could help to limit spread, while further evidence is generated on the scale of establishment. Two options: 1. No statutory action 2. Containment strategy, with a review after 2 year

    Reliable, resilient and sustainable urban drainage systems: an analysis of robustness under deep uncertainty (article)

    Get PDF
    This is the author accepted manuscript. The final version is available from the American Chemical Society via the DOI in this record.The dataset associated with this article is available in ORE at: https://doi.org/10.24378/exe.563Reliability, resilience and sustainability are key goals of any urban drainage system. However, only a few studies have recently focused on measuring, operationalizing and comparing such concepts in a world of deep uncertainty. In this study, these key concepts are defined and quantified for a number of gray, green and hybrid strategies, aimed at improving the capacity issues of an existing integrated urban wastewater system. These interventions are investigated by means of a regret-based approach, which evaluates the robustness (that is the ability to perform well under deep uncertainty conditions) of each strategy in terms of the three qualities through integration of multiple objectives (i.e. sewer flooding, river water quality, combined sewer overflows, river flooding, greenhouse gas emissions, cost and acceptability) across four different future scenarios. The results indicate that strategies found to be robust in terms of sustainability were typically also robust for resilience and reliability across future scenarios. However, strategies found to be robust in terms of their resilience and, in particular, for reliability did not guarantee robustness for sustainability. Conventional gray infrastructure strategies were found to lack robustness in terms of sustainability due to their unbalanced economic, environmental and social performance. Such limitations were overcome, however, by implementing hybrid solutions that combine green retrofits and gray rehabilitation solutions.This study was funded by the UK Engineering and Physical Sciences Research Council through STREAM (EP/G037094/1) with Northumbrian Water Limited, BRIM (EP/N010329/1) and the final author’s fellowship Safe & SuRe (EP/K006924/1)

    Urban surface water pollution problems arising from misconnections

    Get PDF
    The impacts of misconnections on the organic and nutrient loadings to surface waters are assessed using specific household appliance data for two urban sub-catchments located in the London metropolitan region and the city of Swansea. Potential loadings of biochemical oxygen demand (BOD), soluble reactive phosphorus (PO4-P) and ammoniacal nitrogen (NH4-N) due to misconnections are calculated for three different scenarios based on the measured daily flows from specific appliances and either measured daily pollutant concentrations or average pollutant concentrations for relevant greywater and black water sources obtained from an extensive review of the literature. Downstream receiving water concentrations, together with the associated uncertainties, are predicted from derived misconnection discharge concentrations and compared to existing freshwater standards for comparable river types. Consideration of dilution ratios indicates that these would need to be of the order of 50–100:1 to maintain high water quality with respect to BOD and NH4-N following typical misconnection discharges but only poor quality for PO4-P is likely to be achievable. The main pollutant loading contributions to misconnections arise from toilets (NH4-N and BOD), kitchen sinks (BOD and PO4-P) washing machines (PO4-P and BOD) and, to a lesser extent, dishwashers (PO4-P). By completely eliminating toilet misconnections and ensuring misconnections from all other appliances do not exceed 2%, the potential pollution problems due to BOD and NH4-N discharges would be alleviated but this would not be the case for PO4-P. In the event of a treatment option being preferred to solve the misconnection problem, it is shown that for an area the size of metropolitan Greater London, a sewage treatment plant with a Population Equivalent value approaching 900,000would be required to efficiently remove BOD and NH4-N to safely dischargeable levels but such a plant is unlikely to have the capacity to deal satisfactorily with incoming PO4-P loads from misconnections

    Developing resilience to England's future droughts: time for cap and trade?

    Get PDF
    Much of England is seriously water stressed and future droughts will present major challenges to the water industry if socially and economically damaging supply restrictions are to be avoided. Demand management is seen as a key mechanism for alleviating water stress, yet there are no truly effective incentives to encourage widespread adoption of the behavioural and technological demand management practices available. Water pricing could promote conservation, but on its own it is an inefficient tool for dealing with short term restriction in water supply. Raising prices over the short term in response to a drought is likely to be ineffectual in lowering demand sufficiently; conversely, maintaining high prices over the long term implies costs to the consumer which are needlessly high most of the time. We propose a system for developing resilience to drought in highly water stressed areas, based on a cap and trade (C&T) model. The system would represent a significant innovation in England's water market. However, international experience shows that C&T is successful in other sectors, and need not be overly complex. Here, we open the debate on how a C&T system might work in England

    In search of ‘lost’ knowledge and outsourced expertise in flood risk management

    Get PDF
    This paper examines the parallel discourses of ‘lost’ local flood expertise and the growing use of commercial consultancies to outsource aspects of flood risk work. We critically examine the various claims and counter-claims about lost, local and external expertise in flood management, focusing on the aftermath of the 2007 floods in East Yorkshire, England. Drawing on interviews with consultants, drainage engineers and others, we caution against claims that privilege ‘local’ floods knowledge as ‘good’ and expert knowledge as somehow suspect. This paper urges carefulness in interpreting claims about local knowledge, arguing that it is important always to think instead of hybrid knowledge formations. We conclude by arguing that experiments in the co-production of flood risk knowledge need to be seen as part of a spectrum of ways for producing shared knowledge
    • 

    corecore